

Dynamic Analysis of Nuclear Energy System Strategies for Electricity and Hydrogen Production in the USA

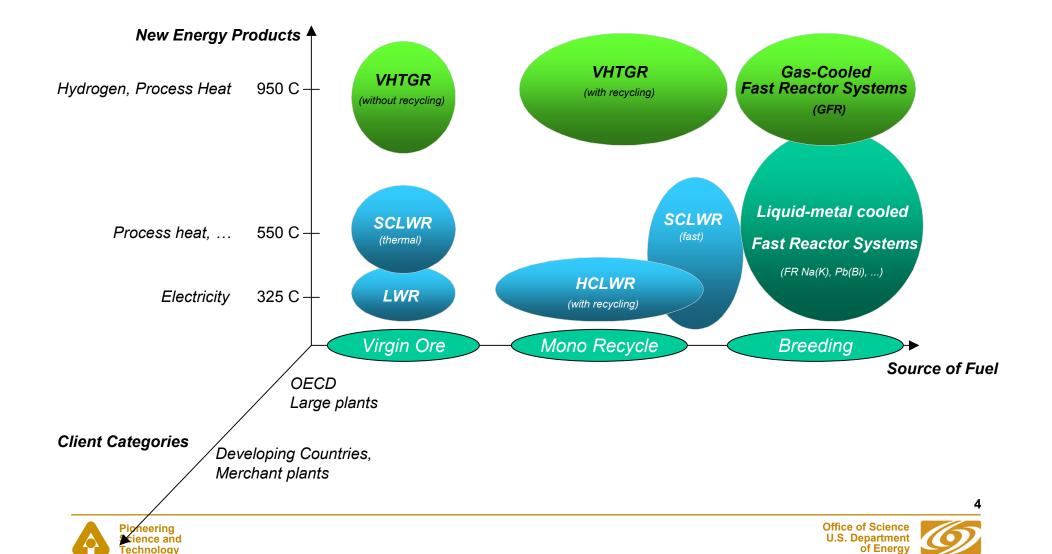
Luc Van Den Durpel Dave Wade Hussein Khalil Abdellatif Yacout

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Contents

- Background of this analysis
- Electricity and hydrogen demand in the US
- Four fuel cycle scenarios
- Economics
- Conclusions

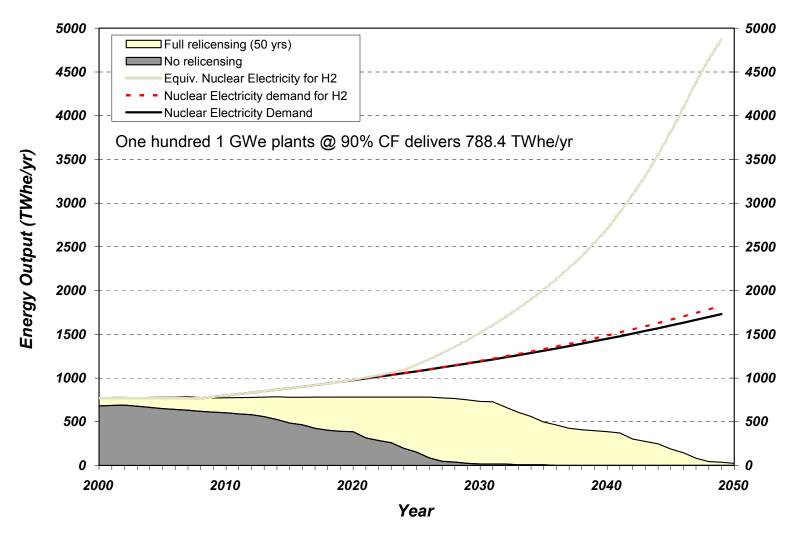

Background of this analysis

- Gen-IV identified 6 promising reactor concepts to serve the future energy market and also recognized the importance of closing the fuel cycle
- US Energy policy also favors the hydrogen economy and the first priority development effort of Gen-V in the US is a VHTR for H₂-production
- AFCI focuses on appropriate paths forward to close the fuel cycle taking into account the timing, technological, economic and institutional constraints
- The main question for this preliminary dynamic analysis becomes:
 - What mix of reactor types and fuel cycle options are best suited to meet the projected demands of electricity and hydrogen production?

Evolving Role for Nuclear Energy

Systems optimization question becomes ...

- How to allocate the fissile materials to reactor types to maximize the economic value added for the nuclear energy system as a whole, i.e. distribute the economic resource to reactor and fuel types according to their realizable contribution to this added value.
 - The planning horizon over which this economic value added is to be optimized is 40-60 years, i.e. lifetime of assets.
 - Used to inform government's intervention to guide allocation through indirect tools, i.e. regulation, taxes, FOAK financing, ...


Electricity and Hydrogen demand scenario for the US

- Based on DOE/EIA & IIASA/WEC data,
 - Overall electricity demand
 - 2000-2020, growth by 1.9 %/yr
 - 2020-...., growth by 1.4%/yr
 - Energy demand assigned to nuclear is expected to grow by 2 %/yr after 2010
 - Overall hydrogen demand
 - 2000-2020, growth by 2.2 %/yr
 - 2020-..., growth by 1 to 1.6 %/yr depending on sector
 - 1 %/yr residential and transport sector
 - 1.6 %/yr refinery sector
 - 1.4 %/yr commercial sector
 - 1.5 %/yr industrial sector
 - Nuclear hydrogen production assumed from 0% in 2020 to 25% by 2050

Total Nuclear Energy Demand

Four fuel cycle scenarios considered

- LWRs in once-through mode
- LWRs + HTGRs in once-through mode
- LWRs + FRs CR>1
- LWRs + HTGRs + FRs (different CRs)
- LWRs essentially for electricity production
- HTGRs + FRs for hydrogen production

Reactor and Fuel Attributes

Reactors	PWR	BWR	AL	WR	HTGR		FR	
Thermal Power (MW _{th})	2647	2647	26	47	600		843	
Electric Power (MW _e)	900	900	90	00	284		320	
Thermal Efficiency (%)	34	34	3	34	47		38	
Capacity Factor (%)	90	90	90		90	85		
Technical lifetime (yr)	50	50	5	50	50		50	
							CR	
Fuels						0.25	0.5	1.25 [*]
	UOX	UOX	UOX	MOX	Particle		Metal	
Average Burnup (GWd/tHM)	50	40	50	50	120	200	120	22
# fuel batches	5	5	į	5	3	7	7	3
Cycle length (mo)	12	12	1	2	12	12	12	12
Initial U (t/tIHM)	1	1	1	0	1	0	0	0
Initial enrichment (%)	4.2	3.7	4.2	0.25	15.5	0.25		
Initial DU (t/tIHM)	0	0	0	0.91903	0	0.0395	0.061	0
Initial REPU (t/tIHM)	0	0	0	0	0	0.3305	0.5936	0.9253
Initial Pu (t/tIHM)	0	0	0	0.08097	0	0.519	0.2919	0.0651
Initial MA (t/tIHM)	0	0	0	0	0	0.1117	0.0535	0.0009
Spent U (t/tIHM)	0.93545	0.94576	0.93545	0.88753	0.85917	0.3305	0.5936	0.8965
Spent enrichment (%)	0.82	0.8	0.82	0.15	4.8			
Spent Pu (t/tIHM)	0.012	0.1085	0.012	0.05512	0.01883	0.3769	0.2365	0.072
Spent MA (t/tIHM)	0.00125	0.00114	0.00125	0.0074	0.002	0.0897	0.0452	0.0077
Spent FP (t/tIHM)	0.0513	0.04225	0.0513	0.04996	0.12	0.2029	0.1248	0.0238

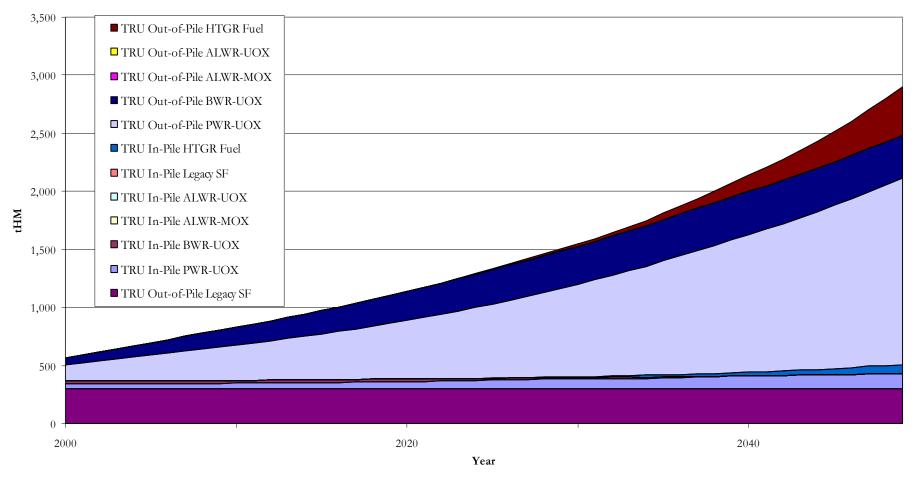
LWRs + HTGRs once-through operation

- LWRs once-through operation for electricity demand only
 - By mid-century
 - 190 000 tHM SF
 - 2 400 tHM TRUs, including 2 180 tHM Pu
 - 1.5 million tons U_{nat} used during period of 2000-2050
 - On world-scale, this would become 5.9 million tU_{nat}
 - If also hydrogen energy demand should be delivered
 - 250 000 tHM SF, + 1 million tU_{nat} to be used

LWRs + HTGRs once-through operation for electricity + hydrogen

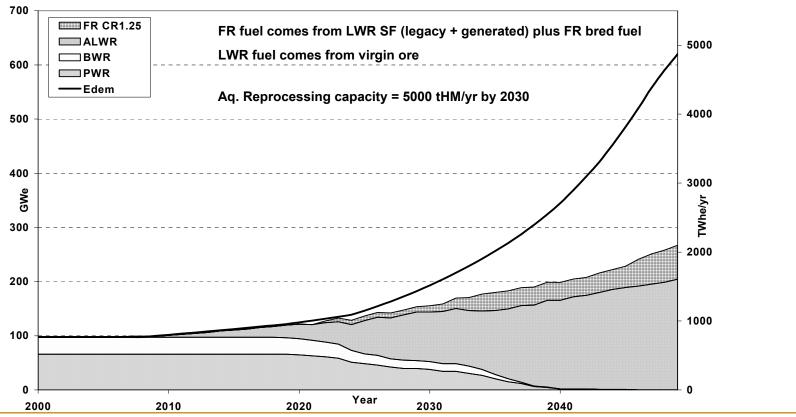
demand

But rapidly growing HTGR SF stock and enrichment services by end of century


	ALWR	ALWR + HTGR	
Energy demand	Electricity	Electricity + hydrogen	
U _{nat} used 2000-2050 (10 ⁶ tHM)	1.5	2.85	
DU stock (10 ⁶ tHM)	1.95	3.05	
Enrichment (tSWU/yr)	31 200	152 400	
Fabrication			
UOX (tHM/yr)	5 150	5 150	
HTGR (tHM/yr)	-	3 500	
SF at-reactor storage (tHM)	20 100	27 200	
SF Interim storage (tHM)	171 200	174 500	

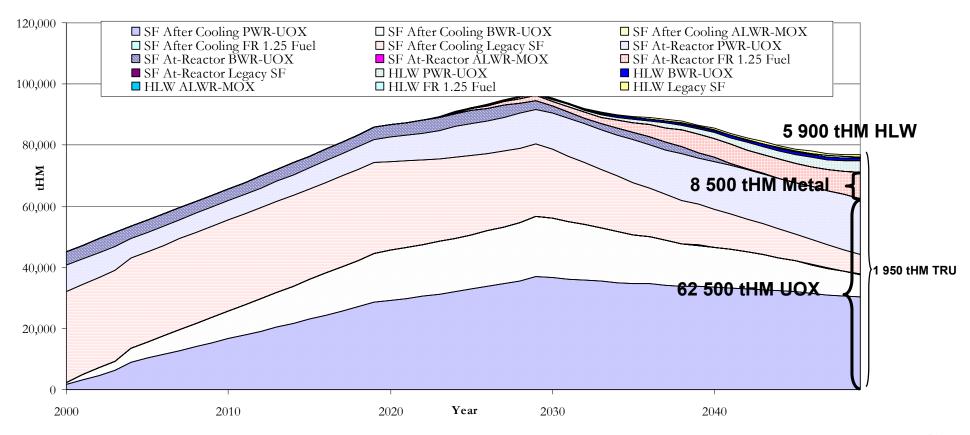
TRU Inventory In-Pile and Out-of-Pile

TRU inventory



LWRs + FRs scenario

 Starting from today's existing LWR-park, and assuming CR = 1.25 for FRs, what is the maximum amount of energy that can be produced assuming LWRs for electricity use and FRs for hydrogen production?

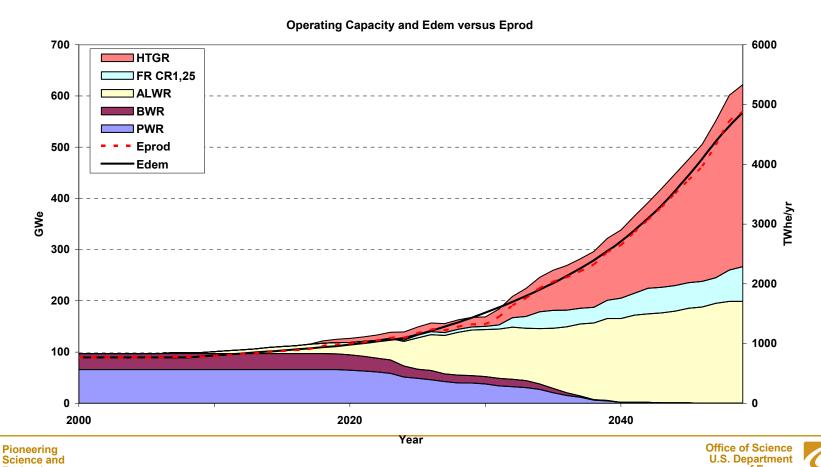


12

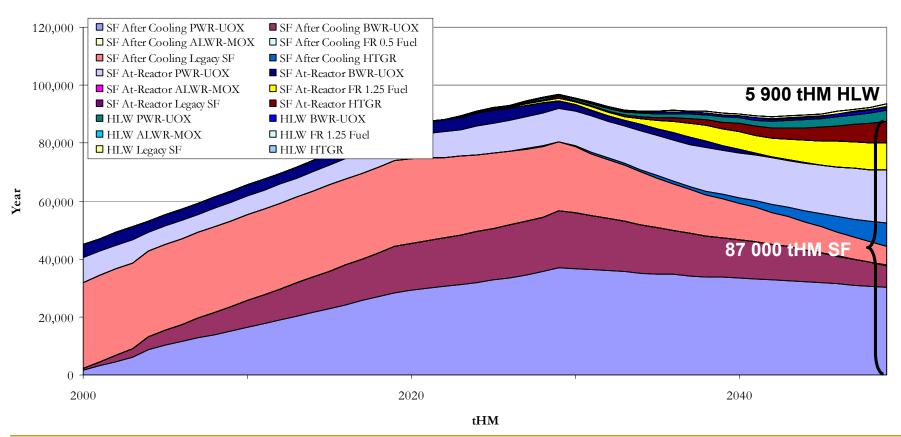
SF and TRU arising for LWRs + FRs scenario

- LWR UOX Aq. Reprocessing:
 - 2000 tHM/yr in 2020, + 3000 tHM/yr in 2030
 - 5 year cooling time

- FR Metal Fuel Dry Reprocessing:
 - Up to 1 200 tHM/yr
 - 5 year cooling time



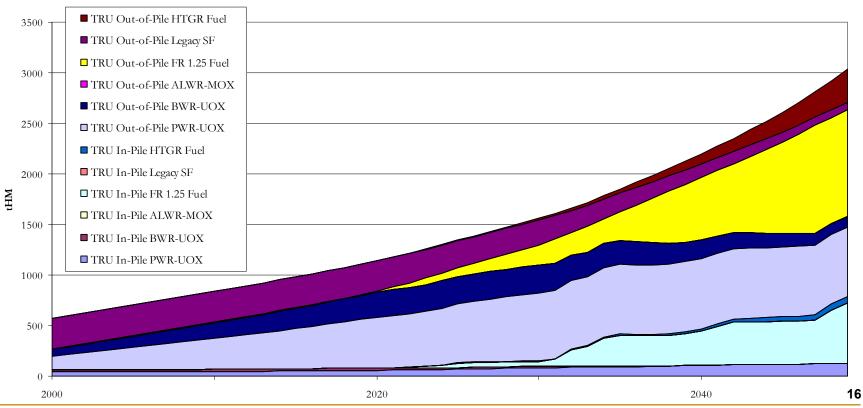
LWRs + HTGRs + FRs scenario


- LWRs for electricity production
- HTGRs + FRs (different CRs) for hydrogen production

14

SF & HLW Inventory

Total Amount of SF and HLW in Fuel Cycle



TRU Inventory

- In 2050
 - CR = 1.25 TRU-amount = 2 250 tHM, 80 000 tHM SF
 - CR = 0.25 TRU-amount = 1 820 tHM, 88 000 tHM SF

TRU inventory

Summary

A mix of

- 33 % LWRs once-through for electricity

- 56 % HTGRs one-through for electricity/hydrogen

- 11 % FR (CR 1.25) closed cycle for hydrogen

Succeeds to

- Meet demand for electricity and for hydrogen
- Cap the SF stock at less than 100 000 tHM until 2050

• But is it economic?

Economics

Capital costs

- LWR 25.6 \$/MWhe, i.e. 1 500 \$/kWe overnight cost

- HTGR 20.5 \$/MWhe, i.e. 1 150 \$/kWe

- FR 37.7 \$/MWhe, i.e. 2 000 \$/kWe

- WACC = 12 %, 17 years economic lifetime

O&M Costs

- 15 \$/MWhe for all reactors

Fuel cycle costs

- HTGR particle fuel fabrication = 700 \$/kgHM
- LWR repro costs = 800 \$/kgHM
- FR repro costs = 1 100 \$/kgHM; refab costs = 1 500 \$/kgHM

\$/MWhe	(A)LWR	(A)LWR + HTGR	(A)LWR + HTGR + FR CR 1.25
	Electricity	Electricity + hydrogen	Electricity + hydrogen + waste mgt
2020	50.1	49.9	55.3
2050	49.9	46.9	55.8

Conclusions

Preliminary dynamic analysis showed:

- Electricity + hydrogen energy demand can be met by nuclear energy
 - But, LWRs + FRs based scenario may be limited and need additional HTGRs to match fast growing energy demands
 - However, HTGR SF stock is growing rapidly and important front-end needs
- If waste management considerations are taken into account,
 then LWRs + HTGRs + FRs scenario allows to:
 - Keep SF amount in fuel cycle below YM (technical) capacity to 2050
 - Reduce TRU inventory in fuel cycle by at least 20 % (mid century)
 - Keep energy cost increase less than 10 %

